
Converting a Context-Free Grammar to a
Nondeterministic Pushdown Automaton

Jay Bagga

1 Introduction

By now you are familiar with context-free grammars and nondeterministic pushdown au-
tomata. They are equivalent in the sense that both generate the class of context-free lan-
guages. In this lesson we study two algorithms that convert a given CFG to an equivalent
NPDA. We’ll see an example and use JFLAP to practice this conversion.

We’ll work with the following CFG:

S → S + T | T
T → T ∗ F | F
F → (S) | a

It is not hard to see that this grammar generates arithmetic expressions such as (a+ a) ∗ a.

The derivation of this expression is as follows:

S → T → T ∗ F → F ∗ F → (S) ∗ F → (S + T) ∗ F → (T + T) ∗ F → (F + T) ∗ F →
(a+ T) ∗ F → (a+ F) ∗ F → (a+ a) ∗ F → (a+ a) ∗ a
Below we use JFLAP to implement two algorithms to convert the CFG to an NPDA. These
are with the LL parsing and with LR parsing.

2 CFG to NPDA (LL)

Figure 1: Input CFG

1

Input the above CFG. See Figure 1. For the LL parsing algorithm, we begin by pushing the
start variable onto the stack. When a variable X is popped from the stack, it is replaced by
the right side of an X-production. When a terminal is popped, it is matched with the input
terminal. The symbol Z is a special symbol used as a “bottom-of-stack” marker.

Figure 2: CFG to NPDA Step 1

Choose Convert to NPDA (LL). See Figure 2. JFLAP creates the NPDA with some initial
transitions. The transition from q0 pushes S. The transitions at q1 (one for each terminal)
match input terminals with those popped. Finally the transition for q1 to q2 pops Z and
accepts.

Figure 3: Adding loop transitions

Now we need to add transitions for each production, as described above. All these transi-
tions are loop transitions at q1. We select q1 and click on “Create Selected” to create the

2

transition corresponding to the production S → T . See Figure 3.

This process can be repeated for each production. Or you can click “Step to Completion”
to get the result as shown in Figure 4. Click “Export” to put this NPDA in a new window
from where you can save it. See Figure 5. Simulate this NPDA to find the transitions
corresponding to the derivation of the expression (a+ a) ∗ a shown above in Section 1.

Figure 4: CFG to NPDA completed

Figure 5: Final NPDA

3

3 CFG to NPDA (LR)

Input the above CFG again. See Figure 6.

Figure 6: Input CFG

Choose Convert to NPDA (LR). In the first step, when a variable X is popped from the
stack, it is replaced by the right side of an X-production. For the LR parsing algorithm, the
NPDA will again have three states. In the state q0, when a terminal is read from the input,
it is pushed on the stack. The only transition for q0 to q1 pops S and finally we pop Z from
q1 to the accept state q2. See Figure 7.

Figure 7: CFG to NPDA Step 1

The other part of the work in LR parsing is done as follows: We pop the right hand side of

4

each production and push the left hand side. See the completed NPDA in Figure 8. Match
the productions with the corresponding transitions at q0.

Figure 8: CFG to NPDA completed

See the final NPDA in Figure 9. We test this with the input (a+a)∗a. Choose “Input” and
select “Step by state”. After clicking “Step” a few times, you should see a green highlighted
step that is accepted in q2. A trace of this run is shown in the table below. Study this
carefully.

Figure 9: Final NPDA

5

Input read Input remaining From state To state Pop Push Stack
(a+ a) ∗ a q0 q0 λ Z Z

(a+ a) ∗ a q0 q0 λ ((Z
(a +a) ∗ a q0 q0 λ a a(Z
(a +a) ∗ a q0 q0 a F F (Z
(a +a) ∗ a q0 q0 F T T (Z
(a +a) ∗ a q0 q0 T S S(Z

(a+ a) ∗ a q0 q0 λ + +S(Z
(a+ a) ∗ a q0 q0 λ a a+ S(Z
(a+ a) ∗ a q0 q0 a F F + S(Z
(a+ a) ∗ a q0 q0 F T T + S(Z
(a+ a) ∗ a q0 q0 T + S S S(Z
(a+ a) ∗a q0 q0 λ))S(Z
(a+ a) ∗a q0 q0)S) F FZ
(a+ a) ∗a q0 q0 F T TZ
(a+ a)∗ a q0 q0 λ ∗ ∗TZ

(a+ a) ∗ a q0 q0 λ a a ∗ TZ
(a+ a) ∗ a q0 q0 a F F ∗ TZ
(a+ a) ∗ a q0 q0 F ∗ T T TZ
(a+ a) ∗ a q0 q0 T S SZ
(a+ a) ∗ a q0 q1 S λ Z
(a+ a) ∗ a q1 q2 Z λ λ
ACCEPT

4 References

1. Introduction to the Theory of Computation (Third Edition), Michael Sipser. Cengage
Learning. 2013.

2. JFLAP - An Interactive Formal Languages and Automata Package, Susan H. Rodger
and Thomas W Finley. Jones and Bartlett Publishers. 2006

6

